organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Unusual hemiacetal structure derived from Salvinorin A

Paulo Carvalho,^a Ruslan Bikbulatov,^b Jordan K. Zjawiony^{b,c} and Mitchell A. Avery^{a,c,d}*

^aDepartment of Medicinal Chemistry, University of Mississippi, 417 Faser Hall, University, MS 38677, USA, ^bDepartment of Pharmacognosy, University of Mississippi, PO Box 1848, 443 Faser Hall, University, MS, 38677-1848, USA, ^cNational Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA, and ^dDepartment of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA

Correspondence e-mail: mavery@olemiss.edu

Received 11 December 2007; accepted 14 January 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.097; data-to-parameter ratio = 13.5.

The salvinorin A analog dimethyl (2R,3aR,4R,6aR,7R,9S,-9aS,9bS)-2-(3-furyl)-9,9a-dihydroxy-3a,6a-dimethyldodecahydrobenzo[de]chromene-4,7-dicarboxylate, $C_{22}H_{30}O_8$, has a relatively simple spatial arrangement in which molecules are linked into layers by two pairs of $O-H \cdots O$ hydrogen bonds. Each molecule has as the central feature a dodecahydro-1Hphenalene ring system. Its three six-membered rings are in the chair conformation, with two axial methyl groups, one axial OH, and one equatorial OH, these OH groups being directly responsible for linking of the molecules in the crystal structure.

Related literature

For the synthesis of analogs of salvinorin A, see: Bikbulatov et al. (2007); Lee et al. (2006); Beguin et al. (2006); Stewart et al. (2006) and references cited therein. For modifications of salvinorin A with changed pharmacological profile, see: Rothman et al. (2007); Groer et al. (2007); Tidgewell et al. (2006); Harding et al. (2005, 2006).

V = 1035.47 (8) Å³

Cu Ka radiation

 $0.32 \times 0.15 \times 0.13 \text{ mm}$

3726 independent reflections

3615 reflections with $I > 2\sigma(I)$

 $\mu = 0.86 \text{ mm}^{-1}$

T = 296 (2) K

 $R_{\rm int} = 0.037$

Z = 2

Experimental

Crystal data C22H30O8 $M_r = 422.46$ Monoclinic, P21 a = 11.6801 (5) Å b = 6.0522 (3) Å c = 15.3739 (6) Å $\beta = 107.678 \ (2)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: none 18724 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$ wR(F ²) = 0.096	H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.41 \text{ e } \text{\AA}^{-3}$
S = 1.05	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
3726 reflections	Absolute structure: Flack (1983),
277 parameters	1587 Friedel pairs
1 restraint	Flack parameter: 0.14 (18)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$O3-H3\cdots O2^{i}$ $O2-H2A\cdots O1^{i}$	0.82 0.82	1.99 2.07	2.757 (2) 2.787 (2)	155 146

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, -z + 2.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank Dr K. Hardcastle for his helpful advice. We also thank the Center for Disease Control and Prevention, USA, for providing financial assistance (CDC cooperative agreements 1UO1 CI000211-03 and1UO1 CI000362-01). This investigation was conducted in a facility constructed with support from Research Facilities Improvement Program grant No. C06 Rr-14503–01 from the National Center for Research Resources, National Institutes of Health.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2037).

References

- Beguin, C., Richards, M. R., Li, J.-G., Wang, Y., Xu, W., Liu-Chen, L.-Y., Carlezon, W. A. & Cohen, B. M. (2006). *Biorg. Med. Chem. Lett.* 16, 4679– 4685.
- Bikbulatov, R. V., Yan, F., Roth, B. L. & Zjawiony, J. K. (2007). Biorg. Med. Chem. Lett., 17, 2229–2232.
- Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Groer, C. E., Tidgewell, K., Moyer, R. A., Harding, W. W., Rothman, R. B., Prisinzano, T. E. & Bohn, L. M. (2007). *Mol. Pharmacol.* **71**, 549–557.
- Harding, W. W., Schmidt, M., Tidgewell, K., Kannan, P., Holden, K. G., Gilmour, B., Navarro, H., Rothman, R. B. & Prisinzano, T. E. (2006). J. Nat. Prod. 69, 107–112.
- Harding, W. W., Tidgewell, K., Schmidt, M., Shah, K., Dersch, C. M., Snyder, J., Parrish, D., Deschamps, J. R., Rothman, R. B. & Prisinzano, T. E. (2005). *Org. Lett.* **7**, 3017–3020.
- Lee, D. Y. W., He, M., Liu-Chen, L.-Y., Wang, Y., Li, J.-G., Xu, W., Ma, Z., Carlezon, W. A. Jr & Cohen, B. (2006). *Biorg. Med. Chem. Lett.* 16, 5498– 5502.
- Rothman, R. B., Murphy, D. L., Xu, H., Godin, J. A., Dersch, C. M., Partilla, J. S., Tidgewell, K., Schmidt, M. & Prisinzano, T. E. (2007). *J. Pharmacol. Exp. Ther.* **320**, 801–810.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stewart, D. J., Fahmy, H., Roth, B. L., Yan, F. & Zjawiony, J. K. (2006). Arzneim.- Forsch. Drug Res. 56, 269–275.
- Tidgewell, K., Harding, W. W., Lozama, A., Cobb, H., Shah, K., Kannan, P., Dersch, C. M., Parrish, D., Deschamps, J. R., Rothman, R. B. & Prisinzano, T. E. (2006). J. Nat. Prod. 69, 914–918.

supplementary materials

Acta Cryst. (2008). E64, o1370-o1371 [doi:10.1107/S160053680800144X]

Unusual hemiacetal structure derived from Salvinorin A

P. Carvalho, R. Bikbulatov, J. K. Zjawiony and M. A. Avery

Comment

The structure was solved using Direct methods and difference Fourier techniques *SHELXTL*, V6.12 (Sheldrick, 2008). Hydrogen atoms were placed in their expected chemical positions using the HFIX command and were included in the final cycles of least squares with isotropic U^{ij} related to the atoms ridden upon. All non-hydrogen atoms were refined anisotropically Structure solution, refinement, graphics and generation of publication materials were performed by using *SHELXTL*, V6.12 software. Additional details of data collection and structure refinement are given in Table 1.

Experimental

Synthesis of hemiacetal (2): Salvinorin A (10 mg, 23 mmol) was placed in aqueous 5% KOH (5 ml) and refluxed for two hours producing a yellow solution. Upon reaching room temperature, the solution was cooled in an ice bath and neutralized with cold aqueous 0.5*M* HCl. The resulting precipitate was collected by vacuum filtration. The product was purified by passing through a short silica column eluting with ethyl acetate to yield 6.2 mg of **1a** (69%).

1 ml of TMSCHN₂ (0.13 mmol) in benzene was added at room temperature to a solution of **1a** (20 mg, 0.05 mmol) in methanol (5 ml). The mixture was stirred at room temperature for 30 min and concentrated to give the corresponding dimethyl ester **2**. The product was purified by column chromatography using hexanes: ethyl acetate (2:1) for elution. Yield 18.3 mg (87%).

Crystals of dimethyl (2R,3aR,4R,6aR,7R,9S,9aS,9 bS)-2-(3-furyl)-9,9a-dihydroxy-3a,6adimethyldodecahydrobenzo[*de*]chromene-4,7-dicarboxylate (**2**) were obtained from slow evaporation of a solution in ethyl acetate/hexanes 1:9. A suitable crystal was coated with Paratone N oil, suspended in a CryoLoop (Hampton Research) and placed in a cooled nitrogen gas stream at 100 K on a Bruker D8 *APEX* II CCD sealed tube diffractometer with graphite monochromated Cu K_a (1.54178 Å) radiation. Data were measured using a series of combinations of phi and omega scans with 10 s frame exposures and 0.5° frame widths. Data collection, indexing and initial cell refinements were all carried out using *APEX* II software (Bruker, 2003)·Frame integration and final cell refinements were done using *SAINT* (Bruker, 2003) software. The final cell parameters were determined from least-squares refinement on 3446 reflections

Considering that the Flack parameter (Flack, 1983) does not confirm unambiguously the absolute configuration of the molecule, The chiral centers were assigned based in the original known configuration of the starting material, Salvinorin A.

Refinement

All H atoms were located in difference maps and treated as riding atoms, with the following distance restraints: C—H = 0.93 Å, U_{iso} =1.2Ueq (C) for Csp2, C—H = 0.98 Å, U_{iso} = 1.2Ueq (C) for CH, C—H = 0.97 Å, U_{iso} = 1.2Ueq (C) for CH2, C—H = 0.96 Å, U_{iso} = 1.5Ueq (C) for CH3, O—H = 0.82 Å, U_{iso} = 1.5Ueq (O) for OH.

Figures

Fig. 2. The packing in the crystal structure, showing the O—H…O hydrogen bonds as dashed blue lines.

Fig. 3. Synthesis of the title compound

dimethyl (2*R*,3aR,4*R*,6aR,7*R*,9S,9aS,9bS)-2-(3-furyl)-9,9a-dihydroxy-3a,6a-dimethyldodecahydrobenzo[de]chromene-4,7-dicarboxylate

Crystal data	
C ₂₂ H ₃₀ O ₈	$F_{000} = 452$
$M_r = 422.46$	$D_{\rm x} = 1.355 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, P2 ₁	Cu K α radiation $\lambda = 1.54178 \text{ Å}$
Hall symbol: P 2yb	Cell parameters from 8551 reflections
<i>a</i> = 11.6801 (5) Å	$\theta = 3.0-69.4^{\circ}$
b = 6.0522 (3) Å	$\mu = 0.86 \text{ mm}^{-1}$
c = 15.3739 (6) Å	T = 296 (2) K
$\beta = 107.678 \ (2)^{\circ}$	Blocks, colourless
$V = 1035.47 (8) \text{ Å}^3$	$0.32 \times 0.15 \times 0.13 \text{ mm}$
Z = 2	

Data collection

Bruker SMART CCD area-detector diffractometer	3615 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.037$
T = 100 K	$\theta_{\text{max}} = 69.4^{\circ}$

phi and ω scans	$\theta_{\min} = 3.0^{\circ}$
Absorption correction: none	$h = -13 \rightarrow 13$
18724 measured reflections	$k = -7 \rightarrow 7$
3726 independent reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.037$	$w = 1/[\sigma^2(F_o^2) + (0.0458P)^2 + 0.4492P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.096$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.05	$\Delta \rho_{max} = 0.42 \text{ e} \text{ Å}^{-3}$
3726 reflections	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$
277 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 1587 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.14 (18)

Secondary atom site location: difference Fourier map

Special details

Experimental. The structure was solved using Direct methods and difference Fourier techniques *SHELXTL*, V6.12 (Bruker, 2003). Hydrogen atoms were placed in their expected chemical positions using the HFIX command and were included in the final cycles of least squares with isotropic U^{ij} related to the atoms ridden upon. All non-hydrogen atoms were refined anisotropically Structure solution, refinement, graphics and generation of publication materials were performed by using *SHELXTL*, V6.12 software. Additional details of data collection and structure refinement are given in Table 1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and

goodness of fit S are based on F^2 , conventional R-factors R are based

on F, with F set to zero for negative F^2 . The threshold expression of

 $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is

not relevant to the choice of reflections for refinement. R-factors based

on F^2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C2	0.18522 (17)	0.9011 (4)	0.91971 (13)	0.0308 (5)
H2	0.1571	0.7482	0.9184	0.037*
C5	0.15034 (17)	0.9159 (3)	0.58226 (12)	0.0226 (4)
H5A	0.1171	0.7690	0.5668	0.027*
H5B	0.1226	1.0076	0.5282	0.027*
C3	0.12566 (17)	1.0070 (4)	0.82782 (12)	0.0261 (4)
H3A	0.1552	1.1568	0.8281	0.031*
H3B	0.0396	1.0144	0.8176	0.031*
C6	0.28737 (16)	0.9033 (3)	0.61198 (12)	0.0217 (4)
H6A	0.3195	1.0521	0.6224	0.026*
H6B	0.3122	0.8401	0.5626	0.026*
C4	0.10549 (16)	1.0123 (3)	0.65832 (12)	0.0209 (4)
H4	0.1380	1.1622	0.6711	0.025*
C8	0.54094 (17)	0.7152 (4)	0.82950 (13)	0.0283 (4)
H8A	0.5286	0.5568	0.8302	0.034*
H8B	0.6268	0.7428	0.8472	0.034*
С9	0.48763 (17)	0.8258 (3)	0.89657 (12)	0.0256 (4)
Н9	0.4971	0.9857	0.8914	0.031*
C7	0.48158 (17)	0.8048 (3)	0.73302 (12)	0.0230 (4)
H7	0.4950	0.9648	0.7349	0.028*
C3A	0.15070 (16)	0.8761 (3)	0.74901 (11)	0.0202 (4)
C6A	0.34211 (16)	0.7655 (3)	0.69886 (12)	0.0197 (4)
C9A	0.35251 (18)	0.7770 (3)	0.87112 (13)	0.0239 (4)
C9B	0.29098 (16)	0.8644 (3)	0.77341 (11)	0.0191 (4)
H9B	0.3154	1.0198	0.7767	0.023*
C10	0.16237 (19)	1.0186 (5)	0.99865 (14)	0.0448 (7)
C12	0.1441 (3)	1.0759 (8)	1.13703 (17)	0.0705 (12)
H12	0.1433	1.0539	1.1967	0.085*
C11	0.1675 (3)	0.9226 (8)	1.0830 (2)	0.0778 (12)
H11	0.1846	0.7751	1.0985	0.093*
C13	0.1359 (3)	1.2334 (7)	1.00599 (18)	0.0751 (12)
H13	0.1281	1.3414	0.9615	0.090*
C16	-0.03024 (17)	1.0299 (3)	0.62641 (12)	0.0252 (4)
C18	0.54524 (17)	0.7069 (4)	0.66942 (13)	0.0261 (4)
C14	0.08432 (17)	0.6535 (3)	0.73785 (13)	0.0257 (4)
H14A	0.1270	0.5548	0.7856	0.039*
H14B	0.0801	0.5906	0.6796	0.039*
H14C	0.0045	0.6763	0.7414	0.039*
C15	0.31545 (17)	0.5190 (3)	0.67784 (13)	0.0259 (4)
H15A	0.2316	0.5000	0.6460	0.039*
H15B	0.3359	0.4370	0.7339	0.039*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

0.3623	0.4661	0.6405	0.039*
0.6056 (3)	0.7648 (5)	0.53744 (18)	0.0490 (7)
0.6898	0.7427	0.5672	0.073*
0.5951	0.8701	0.4890	0.073*
0.5692	0.6270	0.5128	0.073*
-0.1957 (2)	1.2172 (6)	0.65095 (18)	0.0505 (7)
-0.2322	1.2419	0.5868	0.076*
-0.2122	1.3404	0.6846	0.076*
-0.2279	1.0848	0.6688	0.076*
0.31411 (11)	0.9003 (3)	0.93685 (8)	0.0273 (3)
0.32773 (13)	0.5526 (2)	0.87711 (9)	0.0286 (3)
0.3709	0.5030	0.9256	0.043*
-0.09773 (12)	0.9134 (3)	0.57030 (10)	0.0352 (4)
-0.06776 (13)	1.1939 (3)	0.66985 (10)	0.0349 (4)
0.54549 (13)	0.7663 (3)	0.98856 (9)	0.0311 (3)
0.5935	0.6663	0.9902	0.047*
0.58818 (15)	0.5249 (3)	0.67619 (11)	0.0429 (4)
0.54884 (15)	0.8474 (3)	0.60324 (11)	0.0383 (4)
0.1223 (2)	1.2643 (7)	1.09199 (17)	0.1192 (16)
	0.3623 0.6056 (3) 0.6898 0.5951 0.5692 -0.1957 (2) -0.2322 -0.2122 -0.2279 0.31411 (11) 0.32773 (13) 0.3709 -0.09773 (12) -0.06776 (13) 0.54549 (13) 0.5935 0.58818 (15) 0.54884 (15) 0.1223 (2)	0.3623 0.4661 $0.6056 (3)$ $0.7648 (5)$ 0.6898 0.7427 0.5951 0.8701 0.5692 0.6270 $-0.1957 (2)$ $1.2172 (6)$ -0.2322 1.2419 -0.2122 1.3404 -0.2279 1.0848 $0.31411 (11)$ $0.9003 (3)$ $0.32773 (13)$ $0.5526 (2)$ 0.3709 0.5030 $-0.09773 (12)$ $0.9134 (3)$ $-0.66776 (13)$ $1.1939 (3)$ $0.54549 (13)$ $0.7663 (3)$ 0.5935 0.6663 $0.58818 (15)$ $0.5249 (3)$ $0.54884 (15)$ $0.8474 (3)$ $0.1223 (2)$ $1.2643 (7)$	0.3623 0.4661 0.6405 $0.6056(3)$ $0.7648(5)$ $0.53744(18)$ 0.6898 0.7427 0.5672 0.5951 0.8701 0.4890 0.5692 0.6270 0.5128 $-0.1957(2)$ $1.2172(6)$ $0.65095(18)$ -0.2322 1.2419 0.5868 -0.2122 1.3404 0.6846 -0.2279 1.0848 0.6688 $0.31411(11)$ $0.9003(3)$ $0.93685(8)$ $0.32773(13)$ $0.5526(2)$ $0.87711(9)$ 0.3709 0.5030 0.9256 $-0.09773(12)$ $0.9134(3)$ $0.57030(10)$ $-0.66776(13)$ $1.1939(3)$ $0.66985(10)$ 0.5935 0.6663 0.9902 $0.58818(15)$ $0.5249(3)$ $0.67619(11)$ $0.54884(15)$ $0.8474(3)$ $0.60324(11)$ $0.1223(2)$ $1.2643(7)$ $1.09199(17)$

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.0193 (9)	0.0538 (13)	0.0210 (9)	-0.0075 (10)	0.0087 (7)	-0.0039 (9)
C5	0.0235 (9)	0.0264 (9)	0.0172 (8)	-0.0001 (8)	0.0053 (7)	0.0016 (7)
C3	0.0159 (9)	0.0401 (11)	0.0237 (9)	-0.0026 (8)	0.0078 (7)	-0.0048 (9)
C6	0.0233 (9)	0.0242 (9)	0.0195 (8)	-0.0030 (8)	0.0093 (7)	-0.0008 (7)
C4	0.0202 (9)	0.0206 (9)	0.0226 (9)	-0.0014 (7)	0.0074 (7)	-0.0020(7)
C8	0.0190 (9)	0.0402 (12)	0.0239 (9)	0.0031 (8)	0.0037 (8)	-0.0023 (8)
С9	0.0222 (10)	0.0362 (11)	0.0178 (8)	-0.0017 (8)	0.0051 (7)	-0.0020 (8)
C7	0.0198 (9)	0.0281 (10)	0.0215 (9)	-0.0020 (8)	0.0067 (7)	-0.0046 (7)
C3A	0.0161 (9)	0.0257 (9)	0.0185 (8)	-0.0028 (7)	0.0050 (7)	-0.0016 (7)
C6A	0.0174 (9)	0.0236 (9)	0.0180 (8)	-0.0013 (7)	0.0054 (7)	-0.0011 (7)
C9A	0.0222 (10)	0.0311 (10)	0.0199 (8)	-0.0026 (8)	0.0084 (7)	0.0001 (8)
C9B	0.0174 (9)	0.0207 (9)	0.0190 (8)	-0.0034 (7)	0.0053 (7)	-0.0003 (7)
C10	0.0168 (10)	0.098 (2)	0.0218 (10)	-0.0058 (12)	0.0089 (8)	-0.0109 (12)
C12	0.0373 (15)	0.160 (4)	0.0190 (11)	0.0052 (19)	0.0150 (10)	-0.0089 (18)
C11	0.082 (2)	0.126 (3)	0.0380 (15)	-0.036 (2)	0.0370 (15)	-0.0145 (18)
C13	0.072 (2)	0.120 (3)	0.0285 (13)	0.050 (2)	0.0076 (13)	-0.0206 (16)
C16	0.0219 (9)	0.0290 (10)	0.0249 (9)	0.0025 (8)	0.0075 (8)	0.0039 (8)
C18	0.0175 (9)	0.0341 (11)	0.0254 (9)	0.0010 (8)	0.0048 (7)	-0.0053 (8)
C14	0.0209 (9)	0.0306 (10)	0.0243 (9)	-0.0062 (8)	0.0048 (7)	0.0024 (8)
C15	0.0252 (10)	0.0257 (10)	0.0254 (9)	0.0003 (8)	0.0060 (8)	-0.0028 (8)
C19	0.0518 (16)	0.0625 (17)	0.0461 (13)	0.0102 (13)	0.0350 (12)	0.0024 (13)
C17	0.0283 (11)	0.0711 (18)	0.0494 (14)	0.0197 (12)	0.0077 (11)	-0.0069 (13)
O1	0.0180 (7)	0.0454 (8)	0.0191 (6)	-0.0045 (6)	0.0066 (5)	-0.0041 (6)
O3	0.0278 (7)	0.0308 (7)	0.0235 (6)	-0.0033 (6)	0.0022 (5)	0.0080 (6)
05	0.0237 (7)	0.0461 (9)	0.0313 (7)	-0.0011 (7)	0.0015 (6)	-0.0102 (7)

supplementary materials

06	0.0250 (7)	0.0270 (8)	0.0202 (8)		0.0080 (7)	0.0074 (6)	-0.0058 (7)
00	0.0239(7)	0.0379(8)	0.0393(8) 0.0244(7)		0.0089(7)	0.0074 (0)	-0.0038(7)
02	0.0292(8)	0.0301(8)	0.0244(7)		0.0024(0)	0.0027(0)	0.0009 (0)
07	0.0443(9)	0.0492(10)	0.0309(0)		0.0204(8)	0.0181(7)	0.0000(8)
08	0.0409(9)	0.0438(10)	0.0393(8)	`	0.0042(7)	-0.0290(7)	-0.062(7)
04	0.0300 (14)	0.244 (3)	0.0430 (13)	0.005 (2)	-0.0011 (11)	-0.003(2)
Coomotrio navar	nataus (Å °)						
Geometric param	nelers (A,)						
C2—O1		1.447 (2)	C	С9А—О	1	1.	.433 (2)
C2-C10		1.499 (3)	C	C9A—C9	9B	1.	.548 (2)
C2—C3		1.515 (3)	C	C9B—H9	ЭВ	0.	.9800
C2—H2		0.9800	C	C10—C1	3	1.	.349 (5)
C5—C6		1.527 (3)	C	C10—C1	1	1.	.405 (4)
C5—C4		1.535 (2)	C	C12—O4	÷	1.	.318 (6)
C5—H5A		0.9700	C	C12—C1	1	1.	.328 (5)
C5—H5B		0.9700	C	С12—Н1	2	0.	.9300
C3—C3A		1.548 (3)	C	C11—H1	1	0.	.9300
С3—НЗА		0.9700	C	C13—O4	÷	1.	.391 (3)
C3—H3B		0.9700	C	С13—Н1	.3	0.	.9300
C6—C6A		1.540 (2)	C	C16—O5	;	1.	.204 (2)
С6—Н6А		0.9700	C	C16—O6)	1.	.342 (3)
С6—Н6В		0.9700	C	C18—O7	1	1.	.202 (3)
C4—C16		1.514 (2)	C18—O8		1.336 (3)		
C4—C3A		1.567 (2)	C14—H14A		0.9600		
C4—H4		0.9800	C	С14—Н1	4B	0.	.9600
C8—C9		1.513 (3)	C	С14—Н1	4C	0.	.9600
C8—C7		1.533 (3)	C	С15—Н1	5A	0.	.9600
С8—Н8А		0.9700	C	С15—Н1	5B	0.	.9600
C8—H8B		0.9700	C	С15—Н1	5C	0.	.9600
C9—O2		1.416 (2)	C	219—08		1.	.456 (3)
C9—C9A		1.535 (3)	C	С19—Н1	9A	0.	.9600
С9—Н9		0.9800	C	С19—Н1	9B	0.	.9600
C7—C18		1.517 (3)	C	C19—H1	.9C	0.	.9600
С/—С6А		1.571 (2)	C	06) 	1.	.440 (3)
С/—Н/		0.9800	C	СГ7—НІ	7A	0.	9600
C3A—C14		1.538 (3)	C	CI7—HI	7B	0.	.9600
C3A—C9B		1.568 (2)	C	СГ/—НІ	7C	0.	9600
C6A—C15		1.538 (3)	C)3—H3		0.	.8200
C6A—C9B		1.563 (2)	C)2—H2A	ł	0.	.8200
C9A = 03		1.398 (2)			01	1.	10.12 (15)
01 - C2 - C10		106.57 (15)		3 - C9	A—01	1.	10.13(15)
01 - 02 - 03		109.20 (15)		3 - C9	A—C9	1.	12.80(17)
C10 - C2 - C3		114.2 (2) 108 0		n - C9A	а—С9 С0Р	10	US.//(13)
$C_1 = C_2 = H_2$		108.9		$J_{J} = C \Psi^{I}$	а—С9В С0Р	1.	10.37(13)
C10-C2-H2		108.9		л—С9А го сол	A-C9B	1.	10.75(15)
C_{1}		108.9		.9—09A	а—Сув DD ССА	10	U0.07 (13)
$C6 C5 U5^{A}$		111.12 (14)	C	A = C	$D = C^2 A$	1	14.30 (13)
CO-CO-HOA		109.4	C	.уа—С	D - C3A	1.	15.02 (14)
U4—U3—НЗА		109.4	C	UA-C	D-USA	1.	10.49 (14)

C6—C5—H5B	109.4	С9А—С9В—Н9В	103.6
C4—C5—H5B	109.4	С6А—С9В—Н9В	103.6
H5A—C5—H5B	108.0	СЗА—С9В—Н9В	103.6
C2—C3—C3A	111.77 (17)	C13—C10—C11	105.5 (3)
С2—С3—НЗА	109.3	C13—C10—C2	128.8 (3)
СЗА—СЗ—НЗА	109.3	C11—C10—C2	125.6 (3)
С2—С3—Н3В	109.3	O4—C12—C11	108.6 (3)
СЗА—СЗ—НЗВ	109.3	O4—C12—H12	125.7
НЗА—СЗ—НЗВ	107.9	C11—C12—H12	125.7
C5—C6—C6A	114.07 (15)	C12-C11-C10	109.2 (4)
С5—С6—Н6А	108.7	C12-C11-H11	125.4
С6А—С6—Н6А	108.7	C10-C11-H11	125.4
С5—С6—Н6В	108.7	C10—C13—O4	107.7 (3)
С6А—С6—Н6В	108.7	С10—С13—Н13	126.1
H6A—C6—H6B	107.6	O4—C13—H13	126.1
C16—C4—C5	110.25 (14)	O5—C16—O6	123.23 (18)
C16—C4—C3A	111.23 (15)	O5—C16—C4	125.74 (18)
C5—C4—C3A	112.15 (15)	O6—C16—C4	111.03 (16)
C16—C4—H4	107.7	O7—C18—O8	122.7 (2)
С5—С4—Н4	107.7	O7—C18—C7	125.1 (2)
C3A—C4—H4	107.7	O8—C18—C7	112.15 (17)
C9—C8—C7	110.12 (16)	C3A—C14—H14A	109.5
C9—C8—H8A	109.6	C3A—C14—H14B	109.5
С7—С8—Н8А	109.6	H14A—C14—H14B	109.5
С9—С8—Н8В	109.6	C3A—C14—H14C	109.5
С7—С8—Н8В	109.6	H14A—C14—H14C	109.5
H8A—C8—H8B	108.2	H14B—C14—H14C	109.5
O2—C9—C8	113.43 (16)	C6A—C15—H15A	109.5
O2—C9—C9A	110.34 (15)	C6A—C15—H15B	109.5
C8—C9—C9A	110.20 (15)	H15A—C15—H15B	109.5
О2—С9—Н9	107.5	C6A—C15—H15C	109.5
С8—С9—Н9	107.5	H15A—C15—H15C	109.5
С9А—С9—Н9	107.5	H15B—C15—H15C	109.5
C18—C7—C8	108.61 (16)	O8—C19—H19A	109.5
C18—C7—C6A	112.77 (14)	O8—C19—H19B	109.5
C8—C7—C6A	112.85 (15)	H19A—C19—H19B	109.5
С18—С7—Н7	107.4	O8—C19—H19C	109.5
С8—С7—Н7	107.4	H19A—C19—H19C	109.5
С6А—С7—Н7	107.4	H19B—C19—H19C	109.5
C14—C3A—C3	109.09 (16)	O6—C17—H17A	109.5
C14—C3A—C4	109.84 (14)	O6—C17—H17B	109.5
C3—C3A—C4	109.53 (15)	H17A—C17—H17B	109.5
C14—C3A—C9B	116.24 (16)	O6—C17—H17C	109.5
C3—C3A—C9B	105.55 (14)	H17A—C17—H17C	109.5
C4—C3A—C9B	106.38 (14)	H17B—C17—H17C	109.5
C15—C6A—C6	109.81 (15)	C9A—O1—C2	113.84 (14)
C15—C6A—C9B	115.31 (16)	С9А—О3—Н3	109.5
C6—C6A—C9B	106.15 (14)	C16—O6—C17	116.61 (17)
C15—C6A—C7	109.91 (15)	С9—О2—Н2А	109.5

supplementary materials

C6—C6A—C7 C9B—C6A—C7	108.86 (15) 106.57 (13)	C18—O8—C19 C12—O4—C13		115.88 (19) 108.9 (3)
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
O3—H3···O2 ⁱ	0.82	1.99	2.757 (2)	155
O2—H2A···O1 ⁱ Symmetry codes: (i) $-x+1$, $y-1/2$, $-z+2$.	0.82	2.07	2.787 (2)	146

Fig. 1

Fig. 2

